NOCIONES DE NOMENCLATURA DE COMPUESTOS INORGANICOS

Mario Melo Araya Ex Profesor Universidad de Chile meloqca@vtr.net

Conocimientos previos requeridos: Los contenidos del Tema 7 de esta página web

1. Conceptos fundamentales.

La **Nomenclatura Química** se ocupa de **nombrar** y **formular**, de manera sistemática, a las **substancias químicas**. Los nombres asignados están estrechamente relacionados con su **composición, estructura y clasificación**.

Las substancias químicas son **combinaciones de átomos** *de un mismo elemento* o *de elementos diferentes*. Si son de un mismo elemento, se tienen **substancias simples**. Si son de elementos distintos, se tienen **substancias compuestas o compuestos químicos**. La **identidad** y el **número** de átomos combinados lo proporciona la **fórmula química** de la substancia. Por ejemplo, para la sacarosa o azúcar común, una substancia molecular, su fórmula química $C_{12}H_{22}O_{11}$, informa que en cada molécula de sacarosa están combinados 12 átomos C, 22 átomos H y 11 átomos O. Como puede apreciarse, las identidades de los átomos combinados se especifican por medio de los símbolos de los correspondientes elementos y, los números de átomos de cada elemento, por medio de subíndices numéricos llamados **subíndices estequiométricos**.

En general, las partículas constituyentes de los compuestos moleculares son **moléculas**; y la fórmula química informa sobre la composición de cada una de ellas. En los compuestos iónicos, en cambio, las partículas constituyentes son **iones**, o sea, **partículas mono o poliatómicas cargadas eléctricamente**. La carga eléctrica de un ion es $\pm z e$, en donde z es el **número de carga** del ion y e, la **carga elemental**, aproximadamente igual a 1.6×10^{-19} C. Por ejemplo, en el sulfato de aluminio, las partículas constituyentes son iones aluminio (Al^{3+}) y iones sulfatos (SO_4^{2-}). Cada ion aluminio tiene una carga de +3e y cada ion sulfato, una carga de -2e, las que se indican por medio de los superíndices 3+y 2- que afectan a las correspondientes fórmulas químicas de estos iones. Una porción cualquiera de sulfato de aluminio contendrá 2N iones Al^{3+} y 3N iones SO_4^{2-} para que exista equilibrio eléctrico, o sea, para que las cargas se anulen, como se demuestra a continuación:

$$Q_{+} = 2N \times (+3e) = +6Ne$$

 $Q_{-} = 3N \times (-2e) = -6Ne$
 $Q_{+} + Q_{-} = +6Ne - 6Ne = 0$

en donde, N es un número entero muy grande y depende de la porción que se tome. En este compuesto, por lo tanto, por cada 2 iones Al^{3+} hay 3 iones SO_4^{2-} . Esta información está expresada simbólicamente en la fórmula química $Al_2(SO_4)_3$. Si consideramos a esta agrupación mínima de iones como una unidad, que podemos llamar **Unidad Fórmula** (**UF**), podemos decir, también, que en la porción tomada anteriormente habrían N Unidades Fórmula $Al_2(SO_4)_3$. Esta Unidad Fórmula puede considerarse como una entidad elemental análoga a la molécula, sólo para los efectos de facilitar los cálculos y razonamientos estequiométricos, por el simple hecho de no ser una entidad elemental real. Las entidades elementales reales en los compuestos iónicos son los iones.

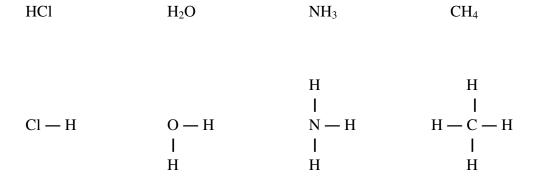
Por otra parte, los compuestos químicos pueden ser **binarios, ternarios, cuaternarios,** etc. según que sean combinaciones de átomos de 2, 3, 4, etc. elementos distintos. Ejemplos,

Compuesto binario: NH₃ amoníaco; combinación de átomos de nitrógeno (N) y

y de hidrógeno (H).

Compuesto ternario: H₂SO₄ ácido sulfúrico; combinación de átomos de hidrógeno

(H), de azufre (S) y de oxígeno (O).


Compuesto cuaternario: NaHCO₃ bicarbonato sódico; combinación de átomos de sodio

(Na), de hidrógeno (H), de carbono (C) y de oxíge-

no (O).

2. Valencia estequiométrica.

Los átomos de los diferentes elementos, cuando se combinan entre sí, no presentan la misma capacidad de combinación. Por ejemplo, en las siguientes combinaciones:

Puede observarse que el átomo Cl es capaz de combinarse con sólo un átomo H; en cambio, los átomos de oxígeno, nitrógeno y carbono son capaces de combinarse con 2, 3 y

4 átomos H, respectivamente; o sea, sus capacidades de combinación son 2, 3 y 4 veces mayor que la del átomo Cl.

A esta **capacidad de combinación** que tienen los átomos de los elementos se le llama **valencia estequiométrica**, o simplemente, **valencia**, la que está relacionada con la disposición de los electrones en la corteza atómica y los **enlaces** que se establecen entre los átomos. Para evaluarla se le asignó valor 1 a los átomos H y Cl, con lo cual los átomos O, N y C tendrían valencias 2, 3 y 4, respectivamente. En las fórmulas gráficas las valencias están representadas por trazos que unen los átomos en los cuales cada átomo aporta con la mitad del trazo. De acuerdo con lo anterior, en las siguientes combinaciones de átomos

NaH	KH	LiH	HF	HBr	HI
CaH ₂	H_2S	H_2Se	H_2Te		
PH ₃	AsH_3	SbH_3			
CH ₄	SiH ₄				

los átomos Na, K, Li, F, Br e I, tendrían valencia 1; los átomos Ca, S, Se y Te, valencia 2; los átomos P, As y Sb, valencia 3; y los átomos C y Si, valencia 4.

Para átomos que no se combinan con átomos H, pueden considerarse sus combinaciones con otros átomos monovalentes (Cl, Na, ... etc) y, en tales casos, sus valencias serían iguales al número de átomos monovalentes con los que se hallen combinados. Por ejemplo, en las combinaciones

CaCl ₂	$MgCl_2$	FeCl ₂	
AlCl ₃	FeCl ₃	PCl ₃	

los átomos Ca, Mg y Fe, tendrían valencia 2; los átomos Al, Fe y P, valencia 3. En las combinaciones

$$SO_3$$
 CrO_3 ... P_2O_5 ...

la capacidad de combinación del átomo S, en el SO₃ es 3 veces mayor que la del átomo O, y como la de este es dos veces mayor que la del átomo H, la del átomo S

deberá ser 6 veces mayor que la del H; por lo tanto, la valencia del átomo S en el SO_3 es 6. Esta misma valencia tendrá el átomo Cr en la combinación CrO_3 . En el caso del P_2O_5 los dos átomos P, por estar combinados con cinco átomos O, tendrían una capacidad de combinación diez veces mayor que la del átomo P; por lo tanto cada átomo P tendría una capacidad de combinación cinco veces mayor que la del átomo P. La valencia del átomo P, entonces, en el P_2O_5 sería S.

Conociendo las valencias de los átomos que se combinan es posible hallar la fórmula química de la combinación, tal como se explica a continuación: sean **A** y **B**, los átomos que se combinan y sean **a** y **b** sus correspondientes valencias, o sea,

a b A B

Si a y b son designales y no divisibles, el subíndice estequiométrico de A será b y el de B será a, o sea, A_bB_a Ejemplos:

Si **a** y **b** son desiguales pero divisibles, se divide la valencia mayor por la menor y el cuociente será el subíndice del átomo de menor valencia. Ejemplos

el subíndice 1, no se escribe en la fórmula química.

Si $\bf a$ y $\bf b$ son iguales, los subíndices estequiométricos de $\bf A$ y $\bf B$ serán iguales a 1. Ejemplos,

A continuación se dan las valencias de los átomos de algunos elementos, agrupados según el ordenamiento dado en el Sistema Periódico de los Elementos,

	GRU PO I								
	RUPO	I-A			GRUPO I-I		·B		
Hidrógen	о Н	1							
METAL	ES AL	CALINOS			MI	ETALE	S NO	BLI	ES
Litio	Li	1			Cobre	Cu	1	у	2
Sodio	Na	1			Plata	Ag	1		_
Potasio	K	1			Oro	Au	1	У	3
Rubidio	Rb	1							
Cesio	Cs	1							

	GRU PO II							
	GRUPC	II-A		(GRUPO II-B			
METALES	ALCAL	INOTERREOS						
Berilio	Ве	2		Cinc	Zn	2		
Magnesio	Mg	2		Cadmio	Cd	2		
Calcio	Ca	2		Mercurio	Hg	2	у	1
Estroncio	Sr	2						
Bario	Ва	2						

GRUPO III

G	RUPO	III-B		RUPO	III-A
Escandio Itrio Lantano	Sc Y La	3 3 3	Boro Aluminio Galio Indio	B Al Ga In	3 3 3 3
			Talio	TI	3

GRU PO IV							
G	RUPO	IV-B		G	RUPO	IV-A	
Titanio Circonio	Ti Zr	4 y 4	3	CAF	RBONG	DIDES	
Hafnio	Hf	4		Carbono	С	4	
				Silicio	Si	4	
				Estaño	Sn	4 y	2
				Plomo	Pb	4 y	2

GRU PO V				
GRUPO V-B	GRUPO V-A			
Vanadio V 2, 3, 4 y 5	NITROGENOIDES			
	Nitrógeno N 1, 2, 3, 4 y 5			
	Fósforo P 3 y 5 Arsénico As 3 y 5 Antimonio Sb 3 y 5			

GRU PO VI				
GRUPO VI-B	GRUPO VI-A			
Cromo Cr 2, 3 y 6 Molibdeno Mo 2, 3, 4, 5 y 6	CALCOGENOS			
	Oxígeno O 2 Azufre S 2, 4 y 6 Selenio Se 2, 4 y 6 Teluro Te 2, 4 y 6			

GRU PO VII					
GRUPO VII-B	GRUPO VII-A				
Manganeso Mn 2, 3, 4, 6 y 7	HALOGENOS				
	Fluor F 1 Cloro Cl 1, 3, 5 y 7 Bromo Br 1 y 5 Yodo I 1, 5 y 7				

GRUPO VIII B						
Hierro	Fe	2 y 3	Cobalto	Co 2 y 3	Paladio	Ni 2 y 3 Pd 2 y 4 Pt 2 y 4

3. Clasificación de las combinaciones.

Los criterios considerados para clasificar las combinaciones químicas de los átomos de los elementos son dos. Uno de ellos, considera las **propiedades comunes** que presentan; criterio que permite agruparlas en **funciones químicas** (función óxido, función ácido, función hidróxido, etc.). El comportamiento común se debe a la presencia de un átomo o de un grupo de átomos que caracteriza a la función y se le llama **Grupo Funcional**. Por ejemplo, el grupo OH en los hidróxidos; el átomo O, en los óxidos; etc. El otro criterio, considera el número de elementos distintos que entran en su composición (compuestos binarios, ternarios, cuaternarios, etc.). Se tiene así:

A. Combinaciones binarias hidrogenadas

Atomos H con átomos metálicos

1. Hídridos salinos o Hidruros

Atomos H con átomos no metálicos

2. Hídridos ácidos o Hidrácidos

3. Hídridos básicos

4. Hídridos homólogos

B. Combinaciones binarias no hidrogenadas

Atomos metálicos con átomos no metálicos

1. Sales de hidrácidos

C. Combinaciones binarias oxigenadas

Atomos O con átomos metálicos

1. Oxidos básicos

Atomos O con átomos no metálicos

2. Oxidos ácidos o Anhídridos

D. Combinaciones ternarias

- 1. Hidróxidos
- 2. Oxoácidos
- 3. Oxosales
- 4. Sales ácidas de hidrácidos

4. Criterios para nombrar a las combinaciones.

Como norma general, se emplea la **nomenclatura binominal**, es decir, un nombre compuesto de dos palabras; como la utilizada en Zoología, en donde la primera palabra corresponde al nombre del **género** y la segunda, al nombre de la **especie**. Para un compuesto químico, el **nombre genérico** corresponde al nombre de la **función química** a la que pertenece, y el **nombre específico**, al nombre **adjetivado del elemento**, o sea, el formado por la raíz del nombre del elemento y el sufijo **ico**. O bien, el nombre de la función seguido del nombre del elemento interponiendo la preposición **de.** Por ejemplo,

$$Na_2O$$
 óxido sódico u óxido de sodio \downarrow \downarrow nombre nombre genérico específico

En la nomenclatura tradicional se usa el sufijo **-oso**, cuando los átomos de un elemento forman una segunda combinación de la misma función pero con una valencia menor. Por ejemplo,

Fe₂O₃ óxido férrico

FeO óxido ferroso

Si existen combinaciones con valencias inferior y superior a las caracterizadas por los sufijos oso e ico, se utilizan, además, los prefijos **hipo-** y **per-** respectivamente, o sea,

hipo.....osoico per.....ico

Por ejemplo,

1 Cl	2 O	Cl ₂ O	Anhídrido hip oclor oso
3 Cl	2 O	Cl ₂ O ₃	Anhídrido clor oso
5 Cl	2 O	Cl ₂ O ₅	Anhídrido clór ico
7 Cl	2 O	Cl ₂ O ₇	Anhídrido per clór ico

En la **nomenclatura moderna** hay dos alternativas para nombrar a los compuestos químicos: la **nomenclatura estequiométrica** y la **nomenclatura de Stock.** En la primera el subíndice estequiométrico (o número de átomos de cada elemento) se indica por medio de los **prefijos numerales griegos mono, di, tri, tetra, penta, hexa, hepta, etc.** Por ejemplo,

Fe₂O₃ trióxido de dihierro
 FeO monoóxido de monohierro
 N₂O₅ pentaóxido de dinitrógeno

En la construcción de estos nombres la **elisión** (supresión, en la escritura y pronunciación, de la vocal final de una palabra delante de otra vocal) **de vocales no está permitida.** Por ejemplo, en lugar de pentóxido, heptóxido, etc. debe decirse pentaóxido, heptaóxido, etc.

En la **nomenclatura de Stock** el nombre específico es el nombre del elemento precedido de la preposición **de** y su valencia se indica, con número romano y entre paréntesis. Por ejemplo:

Fe₂O₃ óxido de hierro (III)
FeO óxido de hierro (II)

Cl₂O óxido de cloro (I)

Cl₂O₃ óxido de cloro (III)

Cl₂O₅ óxido de cloro (V)

Cl₂O₇ óxido de cloro (VII)

A. COMBINACIONES BINARIAS HIDROGENADAS.

A-1 Hídridos salinos o Hidruros.

Son combinaciones de átomos H con átomos de un elemento metálico; especialmente metales alcalinos y alcalinotérreos. Son compuestos iónicos en los cuales el anión es el ion hidruro H

Tanto en la nomenclatura tradicional como en la de Stock, el nombre genérico es la palabra **hidruro.** Ejemplos,

NaH Hidruro sódico o Hidruro de sodio

CaH₂ Hidruro cálcico o Hidruro de calcio (Hidrolita)

Ejercicios. Escribir las fórmulas químicas de los siguientes Hidruros.

Hidruro de Litio

Hidruro de Potasio

Hidruro de Bario

Hidruro de Estroncio

Hidruro de Aluminio

A-2 Hídridos ácidos o Hidrácidos.

Son combinaciones de átomos H con átomos de Halógenos (F, Cl, Br, I) o Calcógenos (S, Se, Te), los que actúan con valencia 1 y 2 respectivamente. Son compuestos moleculares gaseosos y su carácter ácido lo manifiestan cuando se disuelven en agua, dando soluciones ácidas.

Nombre genérico: Acido

Nombre específico: sufijo **-hídrico** a la raíz del nombre del elemento

También se nombran, agregando el sufijo **-uro** a la raíz del nombre del elemento, seguido de la preposición **de** y de la palabra **hidrógeno.** Ejemplos,

HCl Acido clorhídrico o cloruro de hidrógeno

H₂S Acido sulfhídrico o sulfuro de hidrógeno

Ejercicios. Nombrar los siguientes hidrácidos:

HF

H₂Se

Escribir las fórmulas químicas de los siguientes hidrácidos e indicar otro nombre:

Acido bromhídrico

Acido yodhídrico

Acido telurhídrico

Se acostumbra incluir también entre los hidrácidos al HCN (ácido cianhídrico) y al HN_3 (azida de hidrógeno)

A-3 Hídridos Básicos

Son combinaciones de átomos H con átomos de elementos Nitrogenoides (N, P, As, Sb). Se nombran agregando el sufijo **-ina** a la raíz del nombre del elemento.

NH₃ Nitramina; Amoníaco

PH₃ Fosfina

AsH₃ Arsina

SbH₃ Estibina

El carácter básico lo manifiestan como aceptores de protones (H⁺), dando lugar a los iones amonio, fosfonio, etc.

$$NH_3 + H^+ \rightleftharpoons NH_4^+$$
 ion amonio

$$PH_3 + H^+ \rightleftharpoons PH_4^+$$
 ion fosfonio

$$AsH_3 + H^+ \iff AsH_4^+$$
 ion arsonio

Etc.

A-4 Hídridos homólogos.

Son combinaciones de átomos H con átomos de elementos carbonoides. Se nombran agregando el sufijo **-ano** a la raíz del nombre del elemento. Son compuestos moleculares gaseosos.

CH₄ Metano

SiH₄ Silano

GeH₄ Germanano

SnH₄ Estanano

PbH₄ Plumbano

B. COMBINACIONES BINARIAS NO HIDROGENADAS.

1. Sales de Hidrácidos

Son combinaciones que resultan de reemplazar el o los átomos H de los hidrácidos por átomos metálicos. Son compuestos iónicos; por lo tanto, la fórmula química contiene las cantidades mínimas de iones necesarias para el equilibrio eléctrico.

Se nombran con el nombre del anión seguido del nombre del metal de acuerdo con la nomenclatura de Stock. El nombre del anión se obtiene del nombre específico del hidrácido cambiando el sufijo -hídrico por el sufijo -uro, como se muestra a continuación:

HF Acido fluorhídrico F ion fluoruro

HCl Acido clorhídrico Cl ion cloruro

Ejercicios: Escribir los nombres de los ácidos y sus correspondientes aniones:

HBr Br

HI I

 H_2S S^{2-}

 H_2Se Se^{2-}

 H_2Te Te^{2-}

El **número de carga** z del catión es igual a la valencia del elemento metálico. Ejemplos:

Cloruro de hierro (II) Anión Cl

Catión Fe²⁺

Sal FeCl₂

Sulfuro de hierro (III) Anión S²⁻

Catión Fe³⁺

Sal Fe_2S_3

Ejercicios: Escribir las fórmulas químicas de las siguientes sales de hidrácidos:

Cloruro de calcio Cloruro de plata

Bromuro de potasio Fluoruro de calcio

Cloruro de estaño (IV) Cloruro de cobre (I)

Cloruro de cobre (II) Sulfuro de níquel (III)

Nombrar las siguientes sales de hidrácidos:

K_2S	$CuCl_2$
CsCl	Ni_2S_3
ВаТе	AlCl ₃
KI	HgCl
AuCl ₃	NaF

C. COMBINACIONES BINARIAS OXIGENADAS.

Son combinaciones de átomos O con átomos de cualquier elemento.

C-1 Oxidos básicos u óxidos metálicos.

Son combinaciones de átomos O con átomos de elementos metálicos. Son compuestos iónicos, en donde el anión es el **ion óxido O^{2-}** y el catión, es el **ion metálico** M^{z+} . En la nomenclatura tradicional, como en la de Stock, el nombre genérico es la palabra **óxido.** Ejemplos,

Fórmula qca.	Nom. Tradicional	Nom. de Stock	Nom. Estequiométrica
Na ₂ O	Oxido sódico	Oxido de sodio (I)	Oxido de disodio
SnO	Oxido estanoso	Oxido de estaño (II)	Oxido de estaño
SnO ₂	Oxido estánico	Oxido de estaño (IV)	Dióxido de estaño
Fe ₂ O ₃	Oxido férrico	Oxido de hierro (III)	Trióxido de dihierro
Al ₂ O ₃	Oxido alumínico	Oxido de aluminio (III)	Trióxido de dialuminio
Cu ₂ O	Oxido cuproso	Oxido de cobre (I)	Oxido de dicobre
etc.			

Ejercicios. Escribir las fórmulas químicas de los siguientes óxidos metálicos e indicar los otros nombres en cada caso:

Oxido de cobre (II)

Oxido de litio (I)

Oxido potásico

Oxido niqueloso

Oxido niquélico

Oxido de cobalto (II)

Oxido cobáltico

Oxido bárico

Oxido cálcico

Oxido de cinc

Oxido de manganeso (II)

Oxido de manganeso (III)

Oxido mercurioso

Oxido mercúrico

C-2 Oxidos ácidos u óxidos no-metálicos o Anhídridos.

Son combinaciones de átomos O con átomos de elementos no-metálicos. En la nomenclatura tradicional el nombre genérico es **Anhídrido** y el sufijo **-ico** a la raíz del nombre del elemento si sólo presenta una valencia. Si tiene dos valencias, los sufijos **-oso** e **-ico.** Y si tiene más de dos valencias, se usan los **afijos** (sufijos y prefijos) del siguiente cuadro:

AFIJOS	
hipooso oso ico perico	

Anhídridos del Grupo VII

Cl ₂ O	Anhídrido hipocloroso,	Oxido de cloro (I),	Oxido de dicloro
Cl_2O_3	Anhídrido cloroso,	Oxido de cloro (III),	Trióxido de dicloro
Cl_2O_5	Anhídrido clórico,	Oxido de cloro (V),	Pentaóxido de dicloro
Cl_2O_7	Anhídrido perclórico,	Oxido de cloro (VII),	Heptaóxido de dicloro

Ejercicios: Escribir las fórmulas químicas de los siguientes anhídridos e indicar el nombre tradicional y el estequiométrico en cada caso.

Oxido de bromo (I)

Oxido de bromo (V)

Oxido de yodo (I)

Oxido de yodo (V)

Oxido de yodo (VII)

Oxido de manganeso (IV)

Oxido de manganeso (VI)

Oxido de manganeso (VII)

Anhídridos del Grupo VI

SO_2	Anhidrido sulfuroso,	Oxido de azufre (IV),	Dióxido de azufre
SO_3	Anhídrido sulfúrico,	Oxido de azufre (VI),	Trióxido de azufre

Oxido	de selenio (IV)		
Oxido	de selenio (VI)		
Oxido	de teluro (IV)		
Oxido	de teluro (VI)		
Oxido	de cromo (VI)		
Anhíd	lridos del Grupo V		
N_2O_3	Anhídrido nitroso,	Oxido de nitrógeno (III),	Trióxido de dinitrógeno
N_2O_5	Anhídrido nítrico,	Oxido de nitrógeno (V),	Pentaóxido de dinitrógeno
	icios. Hallar las fórmi onal y el estequiomét		es anhídridos e indicar el nombre
Oxido	de fósforo (III)		
Oxido	de fósforo (V)		
Oxido	de arsénico (III)		
Oxido	de arsénico (V)		
Oxido	de antimonio (III)		

Ejercicios. Hallar las fórmulas químicas de los siguientes anhídridos e indicar el nombre tradicional y el estequiométrico en cada caso.

Oxido de antimonio (V)

Anhídridos de los Grupos IV y III.

CO₂ Anhídrido carbónico Oxido de carbono (IV) Dióxido de carbono

SiO₂ Anhídrido silícico Oxido de silicio (IV) Dióxido de silicio

B₂O₃ Anhídrido bórico Oxido de boro (III) Trióxido de diboro

D. COMBINACIONES TERNARIAS.

D-1 Hidróxidos

Son combinaciones de átomos de elementos metálicos con el grupo **-OH** (radical hidroxilo).


Nombre genérico: Hidróxido

Nombre específico: Sufijo -ico u -oso a la raíz del nombre del elemento en la

nomenclatura tradicional.

Ejemplos:

Ejercicios. Hallar las fórmulas químicas de los siguientes hidróxidos e indicar su nombre tradicional.

D-2. Oxoácidos.

Son combinaciones de grupos hidroxilo (-OH) y átomos O con átomos de elementos no-metálicos. En algunos casos, sólo grupos hidroxilos con átomos de elementos no-metálicos.

Nombre genérico: Acido

Nombre específico: En la nomenclatura tradicional, los mismos afijos usados para

los Anhídridos.

Oxoácidos del Grupo VII

Combinaciones de un átomo del elemento con átomos O y sólo un grupo -OH.

Cl — OH HClO Acido hipocloroso

O = Cl - OH $HClO_2$ Acido cloroso

 $O \longrightarrow Cl \longrightarrow OH$ $HClO_3$ Acido clórico O

O = Cl - OH $HClO_4$ Acido perclórico

Ejercicios. Hallar las fórmulas químicas de los siguientes oxoácidos:

Acido hipobromoso

Acido brómico

Acido hipoyodoso

Acido yódico

Acido peryódico

Acido permangánico

Oxoácidos del Grupo VI

Son combinaciones de un átomo del elemento con átomos O y dos grupos -OH

$$O = S - OH$$
 H_2SO_3 Acido sulfuroso $O = S - OH$ H_2SO_4 Acido sulfúrico $O = S - OH$ $O = OH$ $O = S - OH$ $O = S -$

Ejercicios. Hallar las fórmulas químicas de los siguientes oxoácidos:

Acido selenioso

Acido selénico

Acido telurioso

Acido telúrico

Si dos moléculas de estos oxoácidos pierden una molécula H_2O , se obtiene un dioxoácido. Por ejemplo,

 $H_2S_2O_5$ Acido disulfuroso

En negrita se han indicado los átomos H y O perdidos como una molécula H₂O.

Ejercicios. Hallar las fórmulas químicas de los siguientes dioxoácidos:

Acido dicrómico

Acido disulfúrico

Oxoácidos del Grupo V.

Combinaciones que contienen **3 grupos –OH**; excepto las del nitrógeno que sólo contienen un grupo -OH.

$$\begin{array}{c|cccc} OH & & & & \\ & & & \\ P & & OH & & H_3PO_3 & & Acido (orto)fosforoso \\ & & & \\ OH & & & \end{array}$$

$$\begin{array}{c|c} OH \\ \hline \\ O = & P & OH \\ \hline \\ OH \end{array} \quad \begin{array}{c} H_3PO_4 & Acido (orto)fosfórico \\ \hline \\ OH \end{array}$$

Por pérdida de una molécula H₂O, estos ácidos dan lugar a los **metaácidos**.

OH
$$\mid$$
 HO — P — OH \mid O = P — OH \mid HPO $_2$ Acido metafosfórico

Ejercicios. Hallar las fórmulas químicas de los siguientes oxoácidos.

Acido (orto)arsenioso

Acido (orto)arsénico

Acido meta-arsenioso

Acido meta-arsénico

El nitrógeno forma el ácido nitroso y el ácido nítrico, cuyas fórmulas químicas son análogas a la de los meta-ácidos.

$$O = N - OH$$
 HNO_2 Acido nitroso

$$O = N - OH$$
 HNO₃ Acido nítrico

Si dos moléculas de (orto)ácido pierden una molécula H₂O, se obtienen los dioxoácidos, también llamados piroácidos por obtenerse por pirogenación.

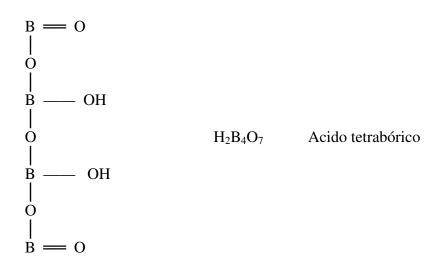
OH OH OH OH OH HO — P — OH HO — P — OH
$$\rightarrow$$
 HO — P — OH \rightarrow HO — P — O — P — OH

 $H_4P_2O_5$

Acido difosforoso o ácido pirofosforoso

Ejercicios. Hallar las fórmulas químicas de los siguientes oxoácidos:

Acido pirofosfórico


Acido piroarsenioso

Acido piroantimonioso

Oxoácidos de los Grupos IV-A y III-A

Este ácido por pérdida de una molécula H₂O da lugar al ácido metabórico (HBO₂).

Cuatro moléculas de H_3BO_3 pierden cinco moléculas H_2O y dan lugar al ácido tetrabórico $H_2B_4O_7$

Según la teoría ácido-base de Brönsted, un ácido es un dador de protones y una base, un aceptor de protones. El protón es el ion H⁺. Una reacción ácido-base consiste en la transferencia de un protón desde el ácido de un sistema ácido-base conjugado a la base de otro sistema ácido base conjugado, o sea,

$$A_1 \iff B_1 + H^+$$
 Sistema A_1/B_1

$$B_2 + H^+ \iff A_2$$
 Sistema A_2/B_2

$$A_1 + B_2 \iff B_1 + A_2$$

Cuando se disuelve un ácido en agua, se produce una reacción ácido-base entre las moléculas del ácido con las moléculas del agua, las cuales actúan como base; como aceptoras de protones; en general,

$$AH + H_2O \rightleftharpoons A^- + H_3O^+$$

la acidez de la solución resultante la proporcionan los iones hidronios H_3O^+ . El anión A^- es lo que queda del ácido al entregar el protón. Corresponde al llamado **residuo halogénico** del ácido. La carga eléctrica de este anión, en el caso de un ácido poliprótico (ácido con más de un átomo H) dependerá del número de protones que haya entregado. Los átomos H que un oxoácido puede entregar como protones son los unidos al átomo de oxígeno de los grupos OH; no así los unidos directamente al átomo central, como ocurre, por ejemplo, en el ácido hipofosforoso H_3PO_2

D-3 Oxosales.

Son compuestos iónicos cuyos aniones corresponden al residuo halogénico de un oxoácido. El catión, generalmente proviene de un elemento metálico cuyo número de carga z es igual a su valencia. Ejemplos,

Na ₃ PO ₄	constituído por los iones	Na ⁺	у	PO ₄ ³⁻
CuSO ₄	constituído por los iones	Cu ²⁺	у	SO ₄ ² -
$Al_2(SO_4)_3$	constituído por los iones	Al ³⁺	y	SO ₄ ²⁻
AgNO ₃	constituído por los iones	Ag^{+}	y	NO ₃

Para hallar los subíndices estequiométricos del catión y del anión de la fórmula química de la oxosal se procede con la misma metodología indicada para las valencias en la página 4, tomando a los números de carga de los iones involucrados como sus respectivas velencias.

El nombre del anion (residuo halogénico) se obtiene del nombre del ácido, simplemente cambiando los sufijos -oso por -ito, e -ico por -ato.

En la siguiente Tabla se dan algunos aniones derivados de oxoácidos.

OXOACIDO	ANION	NOMBRE DEL ANION
HCIO	ClO-	Ion hipoclorito
HClO ₂	ClO ₂	Ion clorito
HClO ₃	ClO ₃	Ion clorato
HClO ₄	ClO ₄	Ion perclorato
H_2SO_3	SO ₃ ²⁻	Ion sulfito
H ₂ SO ₄	SO ₄ ²⁻	Ion sulfato
$H_2Cr_2O_7$	$\operatorname{Cr}_2\operatorname{O}_7^{2-}$	Ion dicromato
HNO ₂	NO ₂	Ion nitrito
HNO ₃	NO ₃	Ion nitrato
H ₃ PO ₄	PO ₄ ³⁻	Ion (orto)fosfato
H ₄ P ₂ O ₇	P ₂ O ₇ ⁴⁻	Ion pirofosfato
H ₂ CO ₃	CO ₃ ²⁻	Ion carbonato
$H_2B_4O_7$	B ₄ O ₇ ²⁻	Ion tetraborato
HIO ₃	IO_3	Ion yodato
H ₂ CrO ₄	CrO ₄ ²⁻	Ion cromato
H ₃ AsO ₃	AsO ₃ ³ -	Ion arsenito
HBrO	BrO ⁻	Ion hipobromito

Para hallar la fórmula química (unidad fórmula) de la sal se procede como se indicó anteriormente. Se consigue así el equibibrio eléctrico como es fácil de comprobar. Ejemplo:

Sulfato de hierro (III)

Iones participantes: Fe^{3+} y SO_4^{2-}

Iones por cada unidad fórmula 2 Fe^{3+} y 3 SO_4^{2-} Fórmula química $\text{Fe}_2(\text{SO}_4)_3$

En la Tabla siguiente se dan algunos ejemplos para una mayor comprensión.

SAL			CADA ORMULA	FORMULA QUIMICA
Nitrato de cobre (II)	Cu ²⁺	v	2 NO ₃	Cu(NO ₃) ₂
Tetraborato de sodio	2 Na ⁺	-		, , , ,
Permanganato de potasio	K ⁺	у		KMnO ₄
Carbonato de calcio	Ca ²⁺		CO_3^{2-}	CaCO ₃
	Cu ²⁺	•		
Meta-arsenito de cobre (II)		-		Cu(AsO ₂) ₂
Dicromato de amonio	$2NH_4^+$	у	$\operatorname{Cr_2O_7}^{2^2}$	(NH ₄) ₂ Cr ₂ O ₇
Etc.				

Ejercicios. Hallar las fórmulas químicas de las siguientes oxosales.

Arsenito de plata

Metaborato de potasio

Hipoyodito férrico

Seleniato de oro (III)

Peryodato de plata

Nitrato de cobalto (III)

Piroarsenito de bario

Cromato de potasio

Sulfito de sodio

Silicato de magnesio

Carbonato de plomo (II)

Sulfato de cromo (III)

Nitrato de mercurio (II)

Nitrito de amonio

Sales ácidas

Los ácidos polipróticos (con dos o más átomos H hidroxílicos, o H ácidos) pueden dar lugar a más de un anión. Ejemplos,

H_2SO_4	\rightarrow	HSO ₄	ion hidrógenosulfato
	\rightarrow	SO_4^{2-}	ion sulfato
H_3PO_4	\rightarrow	$H_2PO_4^-$	ion dihidrógenofosfato
	\rightarrow	HPO_4^{2-}	ion monohidrógenofosfato
	\rightarrow	PO ₄ ³⁻	ion fosfato
H_2S	\rightarrow	HS	ion hidrógenosulfuro
	\rightarrow	S^{2-}	ion sulfuro

Estos aniones hidrogenados de ácidos con los cationes dan lugar a sales ácidas. Ejemplos

Anión H_2PO_4

Catión K⁺

Sal KH₂PO₄ dihidrógenofosfato de potasio

Anión HSO₄-

Catión Ca²⁺

Sal Ca(HSO₄)₂ hidrógenosulfato de calcio

Peróxidos y Peroxiácidos

Los peróxidos son óxidos que contienen el grupo peróxido -O-O- $\,$ o ion $\,$ peróxido $\,$ $\,$ Ejemplos:

H₂O₂ peróxido de hidrógeno o agua oxigenada

Na₂O₂ peróxido de sodio

BaO₂ peróxido de bario

Los peroxiácidos se obtienen por substitución de un átomo O por un grupo peróxido –O-O-en una molécula de un oxoácido. Ejemplos:

H₂SO₄ H₂SO₅ ácido peroxisulfúrico

H₂S₂O₇ H₂S₂O₈ ácido peroxidisulfúrico